Homework 4

1. An Example of Extended GCD Algorithm (20 points). Recall that the extended GCD algorithm takes as input two integers a, b and returns a triple (g, α, β), such that

$$
g=\operatorname{gcd}(a, b), \text { and } g=\alpha \cdot a+\beta \cdot b .
$$

Here + and \cdot are integer addition and multiplication operations, respectively.
Find (g, α, β) when $a=2024, b=164$.
Solution.
2. Asymptotics and Efficient Algorithms (20 points). Suppose a cryptographic protocol P_{n} is implemented using $\alpha n^{2} \mathrm{CPU}$ instructions. We expect the protocol to be broken with $\beta 2^{n / 10} \mathrm{CPU}$ instructions. α and β are some positive constants, while n is the parameter of the protocol (such as key length in bits). That is, when we set the parameter $n=\sigma$, to use the protocol, the "good guys" need to run $\alpha \sigma^{2} \mathrm{CPU}$ instructions. While to break the protocol, the "bad guys" need to run $\beta 2^{\sigma / 10} \mathrm{CPU}$ instructions.
Suppose, today, everyone in the world uses the primitive P_{n} using $n=n_{0}$, a constant value such that even if the entire computing resources of the world were put together for 8 years, we cannot compute $\beta 2^{n_{0} / 10} \mathrm{CPU}$ instructions.

Assume Moore's law holds. That is, every two years, the amount of CPU instructions a CPU can run per second doubles.

Remark: This problem explains why we demand that our cryptographic algorithms run in polynomial time and it is exponentially difficult for adversaries to break the cryptographic protocols.
(a) (5 points) Assuming Moore's law, how much faster will the CPUs be 8 years into the future compared to now?

Solution.

(b) (5 points) At the end of 8 years, what choice of n_{1} will ensure that setting $n=n_{1}$ will ensure that the protocol P_{n} for $n=n_{1}$ cannot be broken for another 8 years? (Recall that currently, setting $n=n_{0}$ ensures that the adversaries need to run $\beta 2^{n_{0} / 10}$ instruction to break the protocol, which they are unable to do even in 8 years.)
Intuition: Since future computers (8 years later from today) are now faster (based on your answer in part (a)), we need to set our parameters to a larger value to ensure that securities still hold. Your task is to determine how large this new parameter n_{1} needs to be compared to the current parameter n_{0}. Your answer should be an equation for n_{1}, in terms of n_{0} and/or other variables.
Hint: Start by assuming that the old computers are able to run Γ instruction over an 8 -year period. And the new computers are able to run $x \cdot \Gamma$ instruction over an 8 -year period.

Solution.

(c) (5 points) What will be the run-time of the protocol P_{n} using $n=n_{1}$ on the new computers as compared to the run-time of the protocol P_{n} using $n=n_{0}$ on today's computers? (Recall that P_{n} is implemented using $\alpha n^{2} \mathrm{CPU}$ instructions.)
Hint: Start by assuming that today computers are able to run Γ instructions per second.
Your answer should be a ratio of the new run time divided by the old run time.
Solution.
(d) (5 points) What will be the run-time of the protocol P_{n} using $n=n_{1}$ on today's computers as compared to the run-time of the protocol P_{n} using $n=n_{0}$ on today's computers? (Recall that P_{n} is implemented using αn^{2} CPU instructions.)
Your answer should be a ratio of the new run time divided by the old run time.

Solution.

3. Finding Inverse Using Extended GCD Algorithm (20 points). In this problem, we shall work over the group $\left(\mathbb{Z}_{1321}^{*}, \times\right)$. Note that 1321 is a prime. The multiplication operation x is "integer multiplication $\bmod 1321$."

Use the Extended GCD algorithm to find the multiplicative inverse of 47 in the group $\left(\mathbb{Z}_{1321}^{*}, \times\right)$.

Solution.

4. Another Application of Extended GCD Algorithm (20 points). Use the Extended GCD algorithm to find $x \in\{0,1,2, \ldots, 1007\}$ that satisfies the following two equations.

$$
\begin{array}{ll}
x=3 & \bmod 63 \\
x=4 & \bmod 16
\end{array}
$$

Note that 63 is a prime, but 16 is not a prime. However, we have the guarantee that 63 and 16 are relatively prime, that is, $\operatorname{gcd}(63,16)=1$. Also, note that the number $1007=63 \cdot 16-1$.

Solution.

5. Square Root of an Element (20 points). Let p be a prime such that $p=3 \bmod 4$. For example, $p \in\{3,7,11,19 \ldots\}$.
We say that x is a square-root of a in the group $\left(\mathbb{Z}_{p}^{*}, \times\right)$ if $x^{2}=a \bmod p$. We say that $a \in \mathbb{Z}_{p}^{*}$ is a quadratic residue if $a=x^{2} \bmod p$ for some $x \in \mathbb{Z}_{p}^{*}$. Prove that if $a \in \mathbb{Z}_{p}^{*}$ is a quadratic residue then $a^{(p+1) / 4}$ is a square-root of a.
(Remark: This statement is only true if we assume that a is a quadratic residue. For example, when $p=7,3$ is not a quadratic residue, so $3^{(7+1) / 4}$ is not a square root of 3.)

Solution.

6. Weak One-way Functions (20 points). Define $S_{n}=\{0,1\}^{n} \backslash\{0,1\}$. That is, S_{n} is all n-bit numbers except 0 and 1 . Let $h_{n}: S_{n} \times S_{n} \rightarrow\{0,1\}^{2 n}$ be the product function $f\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2}$. Present an adversarial algorithm $\mathcal{A}:\{0,1\}^{2 n} \rightarrow S_{n} \times S_{n}$ that successfully inverts this function with a constant probability when $\left(x_{1}, x_{2}\right) \stackrel{\&}{\leftarrow} S_{n} \times S_{n}$. Compute the probability of your algorithm successfully inverting the function h_{n}.
Hint: Intuitively, to invert the function is equivalent to finding one factor of a number. Can you find a factor that shows up with constant probability?
Hint: Your algorithm is allowed to fail with constant probability. This also means you are allowed to design an algorithm that sometimes (with constant probability) "gives up" and outputs wrong/arbitrary/dummy values.

Solution.

Collaborators :

